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Abstract— This paper tackles the problem of independent
control of multiple degrees of freedom systems based on Local
Magnetic Actuation (LMA). This is achieved by means of
a modular disturbance rejection scheme, with the aim of
enhancing the range of use of Multiple-DoF LMAs in dexterous
surgical manipulators. An LMA actuation unit consists of
a pair of permanent magnets, characterized by diametrical
magnetization, acting as magnetic gears across the abdominal
wall. In this study, the model of the LMA and the time-varying
magnetic disturbances owing to the proximity of multiple units
are discussed. Subsequently, the developed model is capitalized
in order to establish a Kalman state observer for the purpose of
developing a sensor-free endoscopic manipulator suited to infer
the state of the internal side of the LMA. Afterwards, the same
model is used to develop an adaptive feedforward compensator
system, with the aim of balancing the magnetic torques acting
on the LMAs from the neighbouring units in the case of
unknown and frequency-varying sinusoidal disturbances. The
effect of a magnetic shield, realized by means of MuMetal is also
analyzed. The overall control system is modular with respect
of the number of units and requires no centralized intelligence.

The proposed scheme is subsequently validated by means
of experiments performed on a benchtop platform, showing
the effectiveness of the proposed approach. In particular, the
proposed state observer presents an Root Mean Square Error
(RMSE) ranging from 28 rpm to 47 rpm in the estimation of
the rotational velocity of the internal magnet and a RMSE of
1.18 mNm to 1.41 mNm in the estimation of a load torque.
The disturbance compensation system provides a reduction of
40 % to 50 % in the disturbance caused by interacting LMA
units.

I. INTRODUCTION

The practice of Minimally Invasive Surgery (MIS) ap-
peared in the late 1980’s [1], [2]. Since then, substantial
amounts of research has been performed in order to introduce
robotics into the MIS medical practice. Despite the availabil-
ity of several platforms, pioneered by the DaVinci (Intuitive
Surgical [3]), robotic MIS still presents several limitations
such as higher invasiveness [4], cost and design complexity.
In recent years, many advances have been proposed [5],
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Fig. 1. Representation of the LMA concept, the torque is transmitted
through the abdominal wall by means of a rotating magnetic field.

nonetheless, the actuation design is crucial in order to
guarantee dexterity through the realization of several DoF,
simultaneously containing volume and complexity.

The actuation mechanism can be external, hence per-
formed through rigid shafts or cables (e.g. [6], [7]), or
internal, using on-board motors [8], smart materials [9] or
other actuation strategies [10]. Internal actuation is certainly
promising as the invasiveness is lower. Nevertheless, the
main drawback of endo-actuated devices is the miniaturiza-
tion of the actuating mechanism, as the volume reduction is
inevitably associated with lower mechanical power. Among
the possible strategies, magnetic actuation has the peculiarity
of guaranteing coupling across the abdominal wall without
the need of a dedicated entry port. For this reason, magnetic
actuation is becoming popular in the surgical robotic field
[11], [12].

Magnetic coupling as effective method for transmission of
forces and torques in endoscopic devices has been recently
implemented for propulsion of capsule robots [13], anchoring
and motion of microrobots [14], and biopsy needles motion
[15].

To address the problem of transmitting power to a minia-
turized manipulator, the effectiveness of the LMA technique
has been shown [16] while in [17] and [18] the imple-
mentation of LMA-based laparoscopic devices has been
demonstrated. The LMA is based on the concept of magnetic
gears [19], schematized in Fig. 1. An externally sourced
magnetic field induces torque to a rotating permanent magnet
placed inside the abdominal cavity. The rotating magnet
acts as the actuation mechanism for a miniaturized surgical
manipulator. Two approaches can be highlighted to generate
the external magnetic field, electromagnetic (EM) sources or
rotating external permanent magnets (EPM). In this work,
the latter approach has been adopted. The closed loop



control of a single-DoF, permament magnet actuated LMA
is discussed in [20], although, a realistic manipulator based
on the LMA would require many DoFs in order to achieve
sufficient dexterity. Moreover, the amount of space in the
abdominal cavity is limited. For this reason, multiple LMA
units should be confined in a small volume to realize a
multiple-DoF manipulator. Spatial proximity between LMAs
would result in cross-magnetic disturbance acting between
neighbouring DoFs. In [21] this problem is addressed for
electromagnetic-actuated LMA in the case of one sinusoidal
disturbance at constant frequency. This paper extends the
results of [21] by adapting them to the case of permanent
magnets and considering multiple disturbances at various and
time-varying frequencies. The problem is initially tackled
by adopting a physical shielding system and evaluating the
effect on the performances of the single LMA. Subsequently,
an independent control and compensation scheme for every
DoF is developed, resulting in a modular system that can act
as a base for the realization of LMA-based devices with mul-
tiple DoFs (an example is given in Fig. 2). The compensation
scheme adopted here is valid for sinusoidal disturbances
whose frequency evolves in time. Finally, this paper tackles
the problem of adopting a sensorless approach for the LMA
by inferring the status of the internal magnet from external
measurements. A similar approach was adopted in [21],
where the estimation was limited to the disturbance and
not targeted at eliminating the sensors. The need for this
approach is justified by the medical applications where the
laparoscopic devices based on the LMA will undergo steril-
ization and difficult operational environments. Moreover, the
absence of electrical components in the internal part of the
laparoscopic device would result in a safer use and enhanced
biocompatibility [17], [18].

In the following, all the magnetic DoFs are considered
equal in size and shape, thus the mathematical model describ-
ing a single LMA will be considered. Initially, the interaction
between the DoFs caused by magnetic cross-coupling will
be neglected. Subsequently, the disturbances acting on the
Internal Permanent Magnets (IPM) as a consequence of the
magnetic interactions between DoFs will be considered.

The remainder of the paper is organized as follows.
Section II describes the mathematical model of the single-
DoF LMA and the model of the disturbances across different
DoFs. Section III describes the control system architecture
and the estimation method adopted to infer the state of the
IPM, sensorless. In section IV the disturbance compensation
scheme is discussed. In section V the techniques discussed
earlier are validated on an experimental platform. Finally,
in Section VI conclusions and future developments are
discussed.

II. MATHEMATICAL MODEL

A schematic representation of a multi-DoFs, LMA based,
surgical manipulator, is shown in Fig. 2. The system is
composed by a series of LMA units. External and internal
magnets are different in size and are assumed to rotate about
parallel axis. h is the intermagnetic distance between the

Fig. 2. Schematic representation of the relevant components of multiple
LMA units.

Fig. 3. Schematic representation of the single DoF LMA.

magnets. Although h can change depending on the anatomy
of the patients and the specific application, it can be consid-
ered constant within a single procedure, and therefore easily
tunable. In the considered setup, each External Permanent
Magnet (EPM) is actuated by a dedicated DC electric motor
connected to the magnet by means of a shaft, furthermore, the
load acting on the internal permanent magnet is considered.

For the sake of simplicity, the model of the single
DoF (represented in Fig. 3) will be initially considered,
subsequently, the interactions between different DoFs will
be added to the system. The electrical dynamics can be
modelled as:

Vm = KmωD +Rmim + Lmi̇m, (1)

where Vm is the voltage applied to the motor, Km is the
motor voltage constant, ωD is the rotational velocity of the
external assembly, Rm and Lm are the motor resistance and
inductance, and im is the motor current.

The model of the magneto-mechanical dynamics is based
on the discussion of [20]. The magnetic coupling is modelled
as an asymmetrical spur gear pair where the transmitted
torques are two different functions of the angle difference
and the axial distance. In particular:

TDdc (∆θ, h) = TDdmax(h)sin(∆θ), (2)
T dDc (∆θ, h) = T dDmax(h)sin(∆θ), (3)



Fig. 4. Schematic equivalent model of the single DoF LMA, [20].

where ∆θ is the angular displacement of the two rotating
magnets, i.e. ∆θ = (π+ π

2−|θD|−|θd|), θD and θd being the
angular positions of the EPM and IPM respectively. The first
π is motivated by the attraction of opposite poles, while the
π
2 arises because torque is transmitted between the magnets
when the relative angle is near to π

2 . As a consequence,
if the magnets are rotating with the same angular velocity
and transmitting torque, ∆θ can be considered to be in the
proximity of zero. Conversely, if ∆θ increases, the load
torque overcomes the transmitted torque and the control on
the system is lost, leading to a pole slipping condition. When
the system is in a controlled state, TDdc and T dDc can be
approximated, for a given h, as constant values of KDd

and KdD, respectively. Moreover, TDdmax and T dDmax are the
maximum transmittable torques, function of the distance h.
Numerical values of TDdmax and T dDmax for different values of
h can be computed by means of finite element simulations.

The simplified model of the single LMA, represented in
Fig. 4 is:

JDω̇D = τD −KDd∆θ (4)
Jdω̇d = KdD∆θ + τL (5)

where τD is the driving torque, ẇD, ẇd, JD and Jd are the
time derivatives of the rotational velocities and the rotational
inertias of the EPM and IPM respectively.

By recalling that the driving torque τD is proportional to
im through the motor torque constant Kτ and combining eqs.
1, 4 and 5, the complete system can be written in state-space
form as:

θ̇D = ωD, (6)
θ̇d = ωd, (7)

i̇m =
1

L
(Vm −KmωD −Rmim), (8)

˙ωD =
1

JD
(−KdDθD +KdDθd +Kτ im)

− 1

JD
(CfDωD) (9)

ω̇d =
1

Jd
(KDdθD −KDdθd − τL − Cfdωd) (10)

Two additional terms in the torque balance equations have
been added in order to take into account the rotational friction
of the external and internal shaft. It must be pointed out that
the system described by eqs. (6-10) is linear (assuming the
approximation of a small ∆θ), although, it contains electrical
and mechanical dynamics, hence the numerical integration
of such system is challenging (i.e. the problem is stiff),

moreover, the different dynamics naturally recall for a two
time-scales control.

A. Cross-coupling modelling

In [21], a model of cross-disturbances is proposed for
electro-magnetically actuated LMA (LEMAs). In the context
of this paper, a similar approach is adopted and extended
for multiple DoFs. The magnetic interference induced on
the IPMs by magnetic coupling relative to the other DoFs
is acting on each IPM as an input torque disturbance. The
disturbance induced on the internal magnets is considered
as a function of the difference of the velocities, i.e.: d(t) =
Kdistsin(ωdiff t+Φ) where Kdist is as unknown coefficient
describing the intensity of the coupling, and ωdiff is defined
as the difference between the two angular velocities, i.e.:
ωdiff = |ωdof1−ωdof2|. The approach is here generalized to
multiple DoFs and adapted for the LMA system with external
permanent magnets. The model of the disturbance acting on
the ith IPM is defined as:

d(t)i =

N∑
j=1
j 6=i

Kji
dist(ω

ji
diff )sin(ωjidiff t) , (11)

where N is the total number of interacting DoFs, Kji
dist

represents the coupling between the jth LMA unit and the ith

IPM at a specific ωjidiff , and ωjidiff is defined as the difference
between the velocity of the jth EPM and the velocity of the
ith IPM. The disturbance defined in eq. (11) is assumed to
act as an input torque on the ith internal magnet, having no
direct effect on the external magnet. This assumption holds
true if J iD � J id, as the inertia of the EPM operates as a
low-pass filter, reducing the amplitude of the disturbance to
a negligible value. It must be pointed out that, in the scope
of the applications for which the LMA system is designed,
the assumption of J iD � J id is widely satisfied, as the
functional requirements limit the size of the IPM, while the
size of the EPM is directly related to the magnitude of KDdi

and KdDi , hence, to the amount of transmittable torque.
Moreover, the inertia of the EPM is a stabilizing factor
in torque transmission, although an increased inertia would
result in an increased energy consumption during operation.

In the context of this paper, the effect of physical shielding
with MuMetal is also considered. The shielding is adopted
in order to minimize the effect of the disturbances, thus
reducing the Kji

dist(ω
ji
diff ) term of eq. (11). The adoption

of a physical shielding for reduction of magnetic cross-
disturbances is a natural choice. Moreover, the contraction
of Kji

dist(ω
ji
diff ) would result in a smaller control action for

a control-based disturbance compensator, regardless of the
compensator design. Conversely, the adoption of a physical
shield would negatively affect the total transmittable torque
within the magnetic gear, namely KDdi and KdDi . The ana-
lytical modelling of the aforementioned effects is an intricate
question as it is influenced by the magnetic permeability
of the shielding material, along with the geometry of the
shielding and the distance from the gears. In order to tackle



Fig. 5. Scheme of the LMA control system.

this problem, an additional term in the definition of TDdmax

and T dDmax will be introduced, as follows:

TDdmax = TDdmax,U − Tlost (12)

T dDmax = T dDmax,U − Tlost (13)

where TDdmax,U and T dDmax,U are the maximum transmittable
torques without shielding, and Tlost is the term describing
the loss due to the presence of the shield.

The mathematical form of Tlost will be defined as a con-
sequence of the experimental observations, as described in
Section V. It must be pointed out that the term Kji

dist(ω
ji
diff )

will be considered unknown in the following, consequently,
an experimental characterization of this term is beyond the
scope of the paper.

III. CONTROL SYSTEM ARCHITECTURE

The electro-mechanical nature of the LMA system sum-
mons to a multi-layer control scheme, the overall diagram
of the control system is depicted in Fig. 5. Every DoF is
autonomously controlled by a two-layer system. The inner
layer controls the torque produced by the motor (τD) by
regulating the current through a Proportional-Integral (PI)
controller. By closing a current loop at high frequency, it is
possible take into account the low-frequency approximation
of the system by neglecting the electrical dynamics and
considering uniquely the magneto-mechanical dynamics. A
second PI controller is closing the velocity loop, this control
scheme is well-known in literature as cascade control. A
position loop is not considered here as any application
would introduce a slowly moving load, and consequently
a high-ratio transmission gear as in [17]. In this context, it
would be more convenient to close the position loop on the
load. The system’s dynamics are varying with respect to the
intemagnetic distance h, hence, an optimized velocity con-
troller could be synthesized. Nevertheless, the requirements
of the control system in terms of disturbance rejection are
not strict, and a dedicated disturbance compensator will be
described in Section IV. For these reasons, it is convenient
to define a single PI controller (e.g. through the Ziegler-
Nichols method) for an intermediate distance h and verify
the stability margin of the closed loop system for the other
intermagnetic distances under investigation.

It must be pointed out that the velocity loop can be
closed on ωD or ωd. In the first case, the synthesis of the
controller is trivial and the achievable bandwidth is very
high, but the controller will be less sensitive with respect
to the real velocity of the IPM. Conversely, closing the loop
on ωd requires a reliable measurement of the IPM velocity.
Functional requirements like biocompatibility, the aptitude
for sterilization, or the general indication of maintaining the
design of the internal component of the system as simple as
possible, might limit the chance to directly measure the IPM
velocity, leading the way to the development of an estimation
system of unmeasurable quantities. A possible approach is
described in the following.

A. Estimation of the IPM velocity and torque load

The system described by eqs. (6-10) can be considered
as a Multiple Input Multiple Output (MIMO) linear system
where Vm and τL are inputs, the state vector is x =
[θD, θd, im, ωD, ωd]

T and the measurable part of the state is
y = [im, θD, ωD], while the measurable input is u = [Vm].
For the purpose of estimating ωd on such kind of a linear
system, it is straightforward to build a Kalman state observer,
provided that the system is observable and asymptotically
stable. Depending on the coefficients, the system might show
ill-conditioned matrices, due to the presence of electrical
and mechanical dynamics. For this reason, the observability
of the system has been proven by computing the gramian
matrix, which is positive definite and shows numerical results
which are more roboust to ill-conditioning with respect to the
classical observability criterion. Moreover, it is possible to
estimate the load torque acting on the IPM, by means of the
Unknown Input Observer (UIO) technique [22], combined
with the Kalman state observer. The well-known kalman
estimator gives an optimal solution to the problem of finding
the matrix L such that:

x̂ = Ax̂+Bu+ L(y − Cx̂) (14)

where A, B and C are the state space matrices of the linear
system, and x̂ is the estimated state vector. In order to
estimate the unknown load torque τL, the input is considered
as an additional state variable such as:

ż = Afz (15)
τL = Cfz (16)

and the state vector is augmented to accomodate the estima-
tion of z. Further details on the UIO can be found in [23].
By adopting this approach, eq. (14) turns:[

ˆ̇x
ˆ̇z

]
=

[
A BCf
0 Af

] [
x̂
ẑ

]
+

[
B
0

]
− L(y − Cx̂) (17)

τ̂L = Cf ẑ (18)

The simplest form of UIO makes no assumption on the
dynamics of the unknown input, hence Cf = 1 and Af = 0.
A further assumption can be made if Af is assumed to
be a real and negative scalar Af = −cl. In the context
of this paper, the most conservative approach is adopted,



consequently, no assumptions on the load dynamics have
been made. The augmented system including the unknown
input is linear, thus an augmented Kalman observer can be
computed. Provided that the observer is much faster than the
system, the estimated ωd can be used to close the velocity
loop without the need of sensors on the IPM, thus providing
a solution for a lighter and more functional LMA actuator.
In order to compute the Kalman observer, the covariance
matrices of the measurement and process noise (usually R
and Q, respectively) are required. Although it is quite easy
to compute R from measurements, the Q matrix represents
a measurement of how much the process deviates from the
nominal model. This is often tuned by means of heuristics,
the same approach has been adopted in this paper.

IV. TIME VARYING DISTURBANCE REJECTION

As described in sec. II the dynamic model of the single
DoF LMA is linear, but the magnetic cross-coupling affecting
the IPMs is a sinusoidal function of ωjidiff for the ith internal
magnet. This introduces a nonlinear, time varying term in eq.
(10) that depends on the states of other DoFs. In practice,
Kji
dist is going to be negligible for most inter-DoF coupling,

nevertheless, neighbour DoFs could recieve a significant
amount of disturbance. The aforementioned disturbances can
be compensated by an Adaptive Feedforward Compensator
(AFC) system [24]. This technique is widely adopted in noise
compensation and disturbance compensation on rotating de-
vices (e.g. compact discs) as it involves the addition of an
adaptive feedforward term that does not require any change
in the closed loop control system. For the sake of simplicity,
the case of a disturbance generated by a single degree of
freedom j on the ith IPM is discussed. It must be pointed
out that this implies no loss of generality, as the proposed
approach can be scaled up to a generic amount of sinusoidal,
time varying disturbances. The disturbance rejection problem
can be formulated as:

y(t) = gd(t) ∗ [uc(t)− d(t)] (19)

where gd(t) is the impulse response of the single LMA which
can be easily obtained as a high frequency approximation of
eqs.(6-10), ∗ denotes the convolution operation, uc(t) is the
compensating input (superposed to the input coming from
the closed loop regulator) and d(t) is the disturbance. The
goal of the compensator is to generate a uc(t) such that
y(t)→ 0 as t→∞ Considering a single disturbance in the
form described by eq.(11) as:

d(t) = Kdist(ωdiff )sin(α(t)) (20)
dαd(t)

dt
= ωdiff (t) (21)

where Kdist(ωdiff ) is considered unknown, and α(t) is the
integral of the disturbance frequency ωdiff ,i.e. the difference
in angular position between the magnets, one can assume a
control input in the form:

uc(t) = Kcomp(t)sin(αd(t)). (22)

The complete disturbance compensation would be exactly
achieved by letting Kcomp(t) = Kdist(ωdiff (t)). Being
Kdist(ωdiff ) unknown, an appropriate parameter adaptation
strategy would asymptotically allow the compensation goal
to be reached. Algorithms defining the adaptation strategy
fall into the framework of adaptive control theory [25]. The
simplest algorithm is the pseudo gradient algorithm, simply
given by:

dKcomp

dt
= −gωdiffy(t) (23)

where g > 0 is the adaptation gain. Adaptive control theory
guarantees Lyapunov stability for such kind of systems only
if the Laplace transform of gd(t) is strictly positive real,
which is rarely satisfied in practice. However, [24] has
demonstrated the equivalence of such adaptive compensa-
tion system with respect to a Linear Time Variant (LTV)
controller with state space realization:

ẋc(t) = Ad(t)xc(t)−
(
0 −g

)T
y(t) (24)

u(t) = Cdxd(t) (25)

where

Ad(t) =

[
0 ωdiff (t)

−ωdiff (t) 0

]
, Cd =

(
0 1

)
(26)

As the parameter ωdiff (t) appears linearly in eq.(26), the
closed loop system is a Polytopic Linear Parameter Varying
system (PLPV), for which the stability can be guaranteed if
there exists a single positive definite matrix P such that:

MT
i P + PMi < 0, i = 1, 2 (27)

where M1 and M2 are the state space matrices relating the
states to the derivatives of the closed loop system in the
cases of minimum and maximum disturbance frequencies,
respectively. Eq.(27) can be solved using a linear matrix
inequality solver [26]. Being M relative to the close loop
system, the adaptation gain g appears in it [24], hence, it is
possible to use eq.(27) to compute the maximum g such that
the system is stable.

Despite the proposed formulation being developed for the
rejection of a single, time-varying sinusoidal disturbance,
it is straightforward to increase the number of independent
compensation subsystem, although, the disturbances on the
ith DoF are likely to have relevant magnitude only from the
neighbouring DoF, usually (i−1)th and (i+1)th. It must be
mentioned that the compensation system is decentralized as
one or more compensators can be established for all the DoFs
independently. The only external information required are the
velocities of the other DoFs, which, due to the magnitude of
the magnetic couplings and particularly in the case the DoFs
are shielded, can be approximated with the velocities of the
EPMs.

V. SIMULATIONS AND EXPERIMENTS

The techniques proposed in Sections III and IV have
been validated by means of experiments. The experimental
platform is represented in Fig. 6. The motor used to spin
the EPM is a DC Motor (148867, Maxon Motor, Sachseln,



Fig. 6. Single DoF LMA experimental platform.

Switzerland), able to produce 190 mNm of torque and a
maximum speed of 7000 rpm. Two rotary encoders have
been applied on the external and internal magnets, which
are both NdFeB N42 grade magnets, with 25.4 mm and 9.5
mm diameters respectively.

As mentioned in Section III, the diameter of the internal
magnet is limited by the functional requirements, hence, it
has been chosen to adopt a magnet able to enter an abdominal
cavity through a standard 12 mm laparoscopic incision. An
hysteresis brake was adopted to simulate the presence of
a varying load torque. The current control loop is carried
out by a microcontroller at 20 kHz. The velocity loop,
the observer and the AFC are run on a desktop PC at 1
kHz. Regarding the values of TDdmax(h) and T dDmax(h), the
same magnets have been adopted in [20], hence the same
numerical values have been used here, i.e.:

TDdmax(h) = (78e−105h + 12e−31h)10−3 (28)
T dDmax(h) = (222e−169h + 63e−51h)10−3 (29)

where the intermagnetic distance h is expressed in meters.
Initially, the effect of physical shielding has been investigated
in order to compute the value of Tlost(h). Three sheets
of high magnetic permeability alloy (MuMetal, Carpenter
Technology Corp., USA), offering a permeability of 3.5 ·105

H/m to 5 · 105 H/m have been added on the lateral sides
of the system. In order to show the effect of shielding,
the stall torque, defined as the required torque in order to
have poles slipping, and consequently a loss of control on
the velocity of the IPM, has been recorded. Fig. 7 shows
the torque required to enter the pole slipping condition
without shielding, the intermagnetic distance h, ranging from
3 to 7 cm with 1 cm interval is reported on the X axis,
the EPM velocity, ranging from 1500 to 7000 rpm with
increments of 500 rpm is on the Y axis, while on the
Z axis the braking torque is reported. It must be pointed
out that, in the previous paper on closed loop control of
a similar platform [20], only speeds up to 1700 rpm were
considered, while in the present work speeds up to 7000 rpm
are reported. The maximum transmittable torque is decreas-
ing with distance. Interestingly, also the variability of the
torque is significantly decreasing with distance. This can be
explained by the fact that the rotation of the IPM is smoother
when the magnetic attraction force between the magnets
is reduced. Moreover, at higher speeds the smoothness of
the system’s motion entails the torque to be lower. In Fig.
8, the effect of the shielding with MuMetal is represented,

Fig. 7. Load torque required to enter the poles slipping condition without
shielding.

Fig. 8. Effects of physical shielding with MuMetal: Average difference
between maximum torque transmission with unshielded and shielded LMA
at various distances.

the average difference in transmittable torque between the
unshielded and shielded condition are shown, depending on
the intermagnetic distance h. The influence of the shielding
on the torque transmission is always present, moreover,
it significantly reduces with distance. The measured data
have been interpolated with a first order polynomial whose
coefficients have been used to shape the Tlost term. It must
be mentioned that the effect of shielding is always below
2.5 mNm, which is small with respect to TDdmax and T dDmax.
The effect of shielding on the torque transmission can be
considered acceptable.

The validation of the IPM velocity and load torque es-
timations have been carried out by means of dedicated
experiments. In order to validate the speed estimation, a
varying velocity setpoint has been given to the IPM, at
different intermagnetic distances (namely 3, 5 and 7 cm).
The measured speed has been compared to the output of the
oberserver. Fig. 9 shows the estimated and measured IPM
velocities for an intemagnetic distance of h = 5 cm. The
dashed red curve is the IPM velocity setpoint, while the full
blue and green lines represent the estimated and measured
speed respectively. The estimated speed is in perfect accor-
dance with the measurement, showing a good performance of
the Kalman state observer in terms of estimating ωd. In order
to quantify the quality of the estimation, the root mean square
error (RMSE) between the measured and estimated signals
have been computed, resulting in 28.21, 37.23 and 45.43
rpm for h = 3, 5, 7 cm respectively. It must be mentioned
that the state observer described here exibits a dependency on
the intermagnetic distance h. Some experiments have been
carried out to explore the robustness of the observer with
respect to this parameter. The performances of an observer
designed for a given h = h1 turned out to be unsatisfactory
in case h 6= h1. For this reason, further work can be carried



out to design an adaptive Kalman observer. However, the
distance h can be assumed to be quasi-constant in the context
of laparoscopic applications, hence, an LTI observer can
be computed prior to every use of the platform. Fig. 10
shows the load torque (τL) estimation when a sinusoidal
load torque is applied to the system and the speed of the
IPM is simultaneously controlled to a constant value. A
sinusoidal load torque with varying frequency (0.35, 0.6 and
0.8 Hz) and an average value of 8 mNm and an semi-
amplitude of 3 mNm is applied. The amplitude of the load
torque has been chosen in order not to reach the amount
of torque available at the considered intermagnetic distance,
but simultaneously to significantly affect the dynamics of
the system. Measurements have been taken with constant
IPM speeds of ωd = 2500 and ωd = 4000 rpm, although,
only the case of ωd = 4000 rpm is shown in Fig. 10.
The RMSE of the difference between applied and estimated
load torque has been computed, resulting in 1.41 and 1.18
mNm, for ωd = 2500 and ωd = 4000 rpm, respectively.
The quality of the results for this experiment is lower with
respect to the estimation of the IPM speed. As shown by
10, load torques with greater frequencies can be estimated
with lower accuracy. This can be attributed to the absence
of any assumption on the disturbance dynamics. Further
improvements in terms of performances could be achieved by
adopting assumptions on the form of Af , although, suitable
assumptions are context-dependent and could be expressed
depending on the considered application.

These results opens the way for more complex control
algorithms in LMA applications. E.g. in the case of tissue
retraction [17] or motion of a laparoscopic camera [18],
it would be possible to estimate the wrench applied to
the tissue, or the stress in the structure of the controlled
mechanism, and apply consequent control actions.

The validation of the disturbance compensation system has
been carried out by introducing an additional LMA unit in
the experimental setup. The additional DoF has been placed
at a fixed distance from the IPM, i.e. 10 cm. In order to show
the effectiveness of the compensator, the physical shield has
not been considered.

The ωd signal has been recorded in three scenarios: with
the second EPM switched off, with the second EPM switched
on, and finally with the compensation system activated. The
experiment has been repeated for ωd = 1000 rpm, with the
second EPM rotating at ωdist = 1500 rpm and ωdist = 1800
rpm, and 2000 rpm, with the second LMA unit rotating at
ωdist = 2500 rpm. It must be pointed out that, in practice,
only small differential speeds affect the system, as the inertia
of the rotating components naturally filters high frequencies.
For this reason, only ωdiff , equal to 500 rpm and 800 rpm
have been considered. The adaptation gain, described in eq.
(23) has been computed by means of eq. (27). Moreover,
the compensation term of the control action uc(t) has been
limited to a current of 1 A in order to avoid the saturation
of the DC motor. It must be pointed out that the signal
representing the rotational velocity of the IPM is particularly
noisy, hence, results will be shown in the frequency domain,

Fig. 9. Comparison between measured and estimated IPM speed.

Fig. 10. Comparison between measured and estimated load torques, ωd =
4000 RPM .

where the disturbance and compensation effects are clearly
visible. Fig. 11 shows the experimental results in the three
scenarios described above. In the left column, a comparison
between the Fast Fourier Transform (FFT) of the IPM
velocity with no disturbances (blue) and with disturbances
(red) is shown, the second column shows the comparison
between the non compensated and the compensated cases.
In cases (A) and (C) the disturbance frequency is 8.33 Hz
(due to a differential velocity of 500 rpm), while in case
(B), the disturbance frequency is 13.33 Hz.

The effect of the disturbance is clearly visible in the red
line, moreover, in cases (A) and (B) a component around 17
Hz, due to the rotational frequency of the IPM, is visible.
The right column shows the effect of the active disturbance
compensator. The non compensated signal (red) is compared
to the case where the AFC is active (green). In all the
considered scenarios, the frequency component related to the
disturbance is reduced by more than half. In particular, case
(A) shows an amplitude reduction of the peak of 51.2 %,
case (B) shows a reduction of 56.9 % and case (C) shows
a reduction of 50.9 % The disturbance is not completely
compensated, this can be explained by a conservative choice
of the adaptation gain and by the saturation of the actuator.
Moreover, it must be pointed out that the assumption of
purely sinusoidal disturbance is strict in the case of an
experimental platform. However, the adopted compensation
scheme has shown good performances in a real scenario.

VI. CONCLUSIONS

In this paper, a comprehensive control scheme for multiple
LMA units has been proposed. The effect of physical shield-
ing on the transmittable torque is shown to be acceptable
in terms of performance loss. Subsequently, a disturbance
compensation scheme, valid for multiple frequencies and
scalable to the number of DoFs, has been proposed and
experimentally validated. Moreover, a possible approach for



Fig. 11. Comparison between active and inactive disturbance left column
and active / inactive compensation (right column). Three scenarios are taken
into account: (A) ωd = 1000 rpm and ωdist = 1500 rpm, (B) ωd =
1000 rpm and ωdist = 1800 rpm and (C) ωd = 2000 rpm and ωdist =
2500 rpm. On the left the FFT of the IPM velocities when the disturbance
is not active (dashed blue) and when the disturbance is active (red). On
the right the comparison between the case with no compensation (red) and
active compensator (dashed green).

the system control, avoiding the need for sensors on the
internal side of the system, has been discussed. The proposed
approach could be adopted for the control and compensation
of sinusoidal disturbances in other applications based on
multiple rotating magnetic fields. Future works will include
the adoption of the discussed strategies in the development
of a LMA-based laparoscopic manipulator.
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